# Summary statistics for continuous data

Tabriz University of Medical Sciences Standard Workshop on Systematic Reviews \_ October 2012 Dr. Shayesteh Jahanfar, University of British Columbia

## Outline

- identify continuous outcomes
- understand how to summarise continuous data and pool studies with:
  - measures on the same scale
  - measures on different scales
- recognise some of the challenges of continuous data





# **Types of data**

- Binary data
- Counts of infrequent events (e.g. number of strokes)
- Short ordinal scales (e.g. pain grades: none/mild/moderate/severe)
- Long ordinal scales (e.g. disability scales)
- Continuous data (e.g. blood pressure)
  - Censored data (e.g. survival times)



## What are continuous data?

- data with an infinite number of values that are equally spaced
- example: height it can be measured along a numerical continuum of centimetres, metres or inches, feet
  - a person can be 175.24678cm tall, assuming the measurement instrument is accurate enough
  - the difference between 160 and 161cm, and 180 and 181cm, is the same



## Long ordinal scales

- sometimes treated as continuous data
- but not true continuous because
  - they have a finite number of distinct values
  - there are gaps in the continuum
- have multiple, ordered categories which imply magnitude
  - e.g. one category is greater or lesser than another
- spacing between categories is not numerically equivalent
- approach 'continuous' with increasing categories





#### What continuous data can we combine?

- data represent continuous measures
- the mean value is in the middle (distribution is roughly symmetrical)
- measurements are made on all participants (not censored or survival type data)
- data are available for both groups in each trial





#### What data is needed?

|           | Mean           | SD              | Sample size    |  |
|-----------|----------------|-----------------|----------------|--|
| Treatment | $m_t$          | $sd_t$          | n <sub>t</sub> |  |
| Control   | m <sub>c</sub> | sd <sub>c</sub> | n <sub>c</sub> |  |





## Meta-analysis of continuous data

- calculate a single summary statistic to represent the effect found in each study
- Summary statistics combined in meta-analysis
- 2 options
  - mean difference
  - standardised mean difference





## **Mean difference**

- outcomes measured in same unit using same scale (e.g. blood pressure as mmHg)
- pooled analysis in "natural units" and therefore easy to interpret
- studies weighted according to the inverse of the variance (a function of size and SD)

MD = mean on treatment – mean on control





#### Mean difference: example

Review: Comparison:

Outcome:

Caffeine for daytime 'sluggishness'. (version with data) 01 Caffeinated Coffee versus Decafeinated Coffee 03 Irritability at 30 minutes - INAS scale (1-50, high score worse)

| Study<br>or sub-category                   | Ν                 | Caffeine<br>Mean (SD) | N   | Decaf<br>Mean (SD) | WMD (fixed)<br>95% Cl | Weight<br>% | WMD (fixed)<br>95% Cl   |
|--------------------------------------------|-------------------|-----------------------|-----|--------------------|-----------------------|-------------|-------------------------|
| Nescafe 1998                               | 68                | 19.00(15.50)          | 64  | 36.00(17.30)       | -                     | 4.00        | -17.00 [-22.62, -11.38] |
| Harris Hudsons 2002                        | 65                | 20.00(9.10)           | 67  | 30.00(8.60)        | =                     | 13.82       | -10.00 [-13.02, -6.98]  |
| Andronicus 2004                            | 40                | 20.00(2.40)           | 40  | 30.00(3.20)        |                       | 82.17       | -10.00 [-11.24, -8.76]  |
| Total (95% Cl)                             | 173               |                       | 171 |                    | •                     | 100.00      | -10.28 [-11.40, -9.16]  |
| Test for heterogeneity: Chi <sup>2</sup> = | = 5.73, df = 2 (P | = 0.06), l² = 65.1%   |     |                    | .                     |             |                         |
| Test for overall effect: Z = 17            | 7.93 (P < 0.0000  | 01)                   |     |                    |                       |             |                         |
|                                            |                   |                       |     | -10                | 0 -50 0 5             | 0 100       |                         |
|                                            |                   |                       |     |                    |                       |             |                         |

Favours caffeine Favours decaf





## **Standardised mean difference**

- Outcome is same concept measured on different scales, the values must be transformed to a common scale before pooling
- Sometimes scale factors are known and transformations are made directly (e.g weight)
- Standardised mean difference calculated as:

Difference in means between groups Average standard deviation





## **Standardised mean difference**



Different scales but averages mean the same thing (i.e. average person is just as irritable!)



#### **Measurements on different scales**

Comparing irritability at 30 minutes between caffeinated coffee and decafe coffee

| Trial             | Caffeinated<br>N. mean (SD) | Decafe<br>N. mean (SD) | <b>Irritability</b><br>scale |
|-------------------|-----------------------------|------------------------|------------------------------|
| Moccona 1998      | 15 23.0 (15.1)              | 17 31.0 (15.2)         | INAS                         |
| Nescafe 1998      | 68 19.0 (15.5)              | 64 36.0 (17.3)         | INAS                         |
| Piazza D'oro 2003 | 35 21.0 (3.2)               | 37 10.0 (4.20)         | BII                          |

High scores on the Beck Irritability Scale (BII) (1-30) good outcomes, while high scores on the Irritability Negative Affectivity Subscale (INAS) (1-50) are poor outcomes



# **SMD: example**

Review: Caffeir Comparison: 01 Caf Outcome: 06 Irrit

Caffeine for daytime 'sluggishness', (version with data) 01 Caffeinated Coffee versus Dece (Control Coffee 06 Irritability at 30 minutes

| Study<br>or sub-category       | N                 | Caffeine<br>Mean (SD)                 | N   | Decaf<br>Mean (SD) |         | SMD (fixed)<br>95% Cl | Weight<br>% | SMD (fixed)<br>95% Cl |
|--------------------------------|-------------------|---------------------------------------|-----|--------------------|---------|-----------------------|-------------|-----------------------|
| Moccona 1998                   | 15                | 23.00(15.10)                          | 17  | 31.00(15.20)       |         |                       | 16.99       | -0.51 [-1.22, 0.19]   |
| Nescafe 1998                   | 68                | 19.00(15.50)                          | 64  | 36.00(17.30)       |         | -                     | 64.18       | -1.03 [-1.39, -0.67]  |
| Piazza D'Oro 2003              | 35                | -21.00(3.20)                          | 37  | -10.00(4.20)       |         | +                     | 18.83       | -2.90 [-3.58, -2.23]  |
| Total (95% Cl)                 | 118               |                                       | 118 |                    |         | •                     | 100.00      | -1.30 [-1.59, -1.00]  |
| Test for heterogeneity: Chi2   | = 28.72, df = 2 ( | (P < 0.00001), I <sup>2</sup> = 93.0% |     |                    |         | •                     |             |                       |
| Test for overall effect: Z = 8 | ).71 (P < 0.0000  | 1)                                    |     |                    |         |                       |             |                       |
|                                |                   |                                       |     |                    | -10 -   | 5 0                   | 5 10        |                       |
|                                |                   |                                       |     |                    | Favours | caffeine Favours      | s decaf     |                       |





## **RevMan exercise**





#### **Change vs endpoint scores**



## **Problems with MD and SMD**

- what constitutes a clinically important change?
- restrictive eligibility criteria results in smaller standard deviations; therefore these trials given more weight
- mean difference
  - measurements on the same scale are not always comparable (e.g. health care costs in different places, process of care measures)
- standardised mean difference
  - difficult to interpret outcomes in units of SD, but can transform back to units of the scale
  - estimates of variation may not always be comparable making
  - the SD a poor scaling factor



#### Take home message

- pooling continuous data use mean difference or standardised mean difference
- check data for skewness
- can calculate SDs from other statistics
- can use either endpoint or change scores



